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Symbols

A area (e.g., of optics or gratings)

A0 amplitude of plane waveA0e
ik'r'

a entrance slit half-width

B source brightness or spectral radiance

b exit slit half-width

D angular dispersiondθ/dλ, variable source size

D0 source size at upper limit of integral

D* = (A ∆f)1/2/NEP, normalized performance factor for detectors, cm (Hz)1/2/W

d grating groove spacing, distance between mirror M1 and M2 images iny direction, source-
apparent displacement distance in shearing two-beam interferometer

dµµ wavelength interval in integral with change of variable in noise calculation

dσ incremental wave number in integration

E = A0e
ik'r', field of plane wave

E1, E2 plane waves 1 and 2

e exit

F source-to-lens distance

F(σ) detector transform factor in interferometer focal plane

f lens focal length

I = (E1 + E2)(E1 + E2)*, intensity of the interferogram

intensity of source as function ofD0, X0, andy

I(x, y) intensity of source inx-y coordinates of detector plane

i entrance or initial

ix, iy, iz unit vectors in thex, y,and z directions

K integral sum interval, a counter in interferogram inversion transform

Kmax maximum summing interval in inversion of interferogram transformK = 0 toKmax

k scale factor normally a constant, sample number in digital interferogram inversion

k' 2πσ term in plane waveA0e
ik'r', alternate sample number in digital interferogram inversion

ki = i δk

kmax = N δk

L mirror displacement, mirror path length

L length along mirror M1 from apex of mirror M1 and image of M2 at M1

L0 total length of a two-sided interferogram

l path difference in interferometer

M1, M2 mirrors in Michelson interferometer

m distance from mirror M2 (image) to defocus pointDY

N number of interferogram transform samples (nominally number of detectors and/orKmax)

NEP noise equivalent power

n grating order of interference

I D0 X0 y, ,( )
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n0 noise charge of photodetector having noise proportional to its area

ℜ = σ/δσ, resolvance or resolving power

r' distance vector of plane waveA0e
ik'r'

rect rectangular function, Signal = 1 ifb< x >a, 0 otherwise

S area (e.g., grating) normal to the input flux

Savg average spectrum signal

S0 constant-value spectral irradiance

SF scale factor

S/N signal-to-noise ratio

S(K) detected signal (interferogram) for unit quantum efficiency and unit time

S(x) detected signal over linear dimension

S(θ) detected signal over angular dimension

S(θe) exit signal

S(µµ) original spectrum in change of variable noise calculation

S(σ) input spectrum to spectrometer

S'(σ) recovered spectrum from summed interferogram transform

S(σ, θ) input signal over wave number and angular extent

variance of noise on recovered spectrum

U0(σ0) monochromatic source signal withσ0 < σmax

X0 detector plane array upper limit (one-sided) in integral

x height or length from the origin in focal plane

α slit angular extent in dispersive direction, aperture size of angular dimension, detector
angular width

αS circularly symmetric acceptance half-angle

β vertical slit angular extent, detector angular length

βG slit angular width for grating spectrometer

βS slit angular width for Sagnac interferometer

∆ detector subtense angle

∆X, ∆Y linear defocus error inX andY directions for Michelson interferometer

∆Xsample the sample length along interferogram in detector plane, detector width, allowable
defocus blur

∆λ spectral wavelength interval

∆σ spectral wave-number interval

∆(σ) delta function around zero (dc) wave number

δk the smallest interval for integral sum (in interferogram inversion)

δλ limiting wavelength resolution

δσ wave number resolution interval, 1/Nδk, sinc function half-width

Θ tilt angle between mirrors M1 and M2 in Michelson interferometer

Θs angular subtense for first zero of sinc function

Sn
2 σ( )〈 〉
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Θ' angle of source edge of plane wave exiting interferometer monochromator

θ angle, rad

θe exit angle

θi entrance angle

θmax maximum acceptance half-angle for maximum phase angle, normallyπ
λ spectral wavelength

µ wavenumber in change of variable noise calculation

σ spectral wave number, cm−1

σmax maximum wavenumber in spectral band required

τ optical system transmission

τ' average transmission across one fringe half-cycle, 1/2π
Φ initial photon flux

Φ' subsequent photon flux

φ angle of incidence

Ψ incident ray angle to normal of mirror M1

Ω acceptance solid angle, sr

⊗ convolution operator





Introduction

Over the past several years there has been a continu-
ing discussion in the literature concerning the relative
merits of dispersion-based (gratings, prisms, or other)
spectrometers versus interference-based implementa-
tions. In general the interference-based instruments offer
higher throughput than the grating instruments but have
offsetting peculiarities, such as wavelength ambiguity or
spectrum transform outputs.

An active dialog has existed both in and out of the
literature between advocates claiming superiority for one
or another technique. Recently, still another implementa-
tion of the interferometric technique has appeared.
Called the digital array scanned interferometer (DASI)
(refs. 1–4), the new technique is designed to make use of
the interferometer advantages. (Earlier versions, devel-
oped or proposed, include the photodiode array Fourier
transform spectrometer (PAFS) of ref. 5, and the interfer-
ometric diode array spectrometer (IDAS) of ref. 6.)

The DASI serves as the focus of this paper because it
is a recent entry in the field of interferometer implemen-
tations and is claimed to have major benefits for certain
NASA multispectral imaging applications. Although the
claims for DASI have been presented in various ways,
they can be grouped into three general categories with
corollaries. The claims are that (1) DASI has a much
higher étendue than grating spectrometers, (2) DASI’s
have an optimum instrument sampling function, and (3)
DASI possesses several smaller systems-level capabili-
ties. Some of the systems-level capabilities are the
Fellgett (or multiplex) advantage, wavelength linearity,
and well-known and easily correctable system errors,
among others.

This paper reviews the operational principles of
interferometric and dispersive spectrometers and pre-
sents the various claims for DASI. The paper assesses the
DASI claims with respect to the operational principles
presented to determine whether those claims can be sub-
stantiated. Finally, the results are summarized to serve as
a guide to help determine what role DASI’s might play in
appropriate applications.

Overview of Spectrometer Principles and
Characteristics

A monochromator or spectrometer takes selected
incoming radiation and spatially disperses that radiation
into spectral components that can be individually identi-
fied. This process can be accomplished in several ways,
but the most common methods are broadband filters,
direct measurement by means of wavelength dispersion,
and indirect measurement by some transformation pro-
cess. This paper addresses only the dispersion and trans-

formation techniques. The material in this development
depends heavily on that of Jacquinot (ref. 7).

Luminosity, Étendue, and Resolving Power

Of importance to any spectrometer implementation
are the resolving power and the luminosity. Resolving
power (orresolvance) is given byℜ = λ/∆λ, and lumi-
nosity is given by the ratio of the detected power to the
available power for that measurement.

For luminosity, the governing parameter is the
étendue, which represents the size and angular con-
straints on the amount of energy an optical system can
pass. Étendue is given by the productAΩ, whereA is the
area of the optical aperture andΩ is the solid acceptance
angle of the same optics. This equation is simply a direct
consequence of the conservation of energy in an optical
system:Φ = BτAΩ. In this equation,B represents the
brightness, or spectral radiance, of the source, andτ rep-
resents the system transmission. Furthermore,Φ' < Φ,
whereΦ' is the flux of subsequent optical stages.

The desired goal is to have maximum flux at maxi-
mum resolving power. However, there is usually a trade-
off between resolving power and angular acceptance.
One often must sacrifice resolution to achieve higher
signal throughput.

Grating Spectrometers

Dispersion spectrometers have two general imple-
mentations: prism and grating. In either case, a spectrum
is determined by illuminating a slit by some source, pass-
ing the light through the prism, or reflecting or transmit-
ting the light via a grating. The resulting light then
illuminates an exit slit, detector, or detector array. In
most prism and grating systems, the entrance slit is
imaged onto the exit slit or detector array by the colli-
mating and imaging optics with allowance for any
required scale adjustment.

For the prism, the light is refracted differently as a
function of wavelength, giving different exit angles. A
detector or slit, defining an exit angular subtense,
receives energy from a restricted wavelength range.
Changing the slit location or detector location in some
uniform way yields a spectrum whose resolution depends
on the entrance and exit slit widths. The prism fails to
perform its function as its index ceases to have a varia-
tion with wavelength, a case for many transparent mate-
rials at long wavelength. Available signal-to-noise ratio
depends on the amount of energy at the detector, with
decreasing slit widths yielding reduced energy. Resolu-
tion, on the other hand, increases with decreasing
slit widths, giving the fundamental trade-off of
signal-to-noise ratio versus spectral resolution. Because
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the prism generally is considered inferior to the grating,
it will not be considered further.

The grating spectrometer, illustrated in figure 1,
appears similar to the prism in implementation, but oper-
ates by means of an entirely different principle. The dis-
persion in a grating comes from an interference effect
generated by reflection from a parallel pattern of grooves
or refraction from a pattern of index modulation in trans-
mission.

For the more efficient and common reflection grat-
ing, the condition between the incidence angle and the
exit angle that yields constructive interference is

whered is the groove spacing,λ is the wavelength,θi
represents the entrance angle,θe representsthe exit
angle, andn represents the order of the interference. The
order of the dispersion refers to the fact that the grating
can give constructive interference as long as the path
lengths are in integral multiples of one wavelength. Typ-
ically, the first order is the strongest, but by “blazing” the
grating, either certain wavelengths or orders can be
enhanced. Notice that half the wavelength at the second
order gives the same constructive interference and condi-
tions on angles as the first order. Gratings, therefore,
require bandpass filters, “order-sorters,” that limit the
incoming wavelengths to some broad band without the
possibility of higher orders coming through. Detectors
with specific spectral ranges sometimes can eliminate the
need for order-sorters.

As with the prism, the grating spectrometer images
the entrance slit onto the exit slit or onto a detector
(array). In the case of the exit slit, moving the slit so that
it covers the range of angles required generates a spec-
trum. Rotating the grating gives the same effect. A detec-
tor array simultaneously samples the entire spectrum, if
the array is large enough.

Again, as with the prism, a combination effect of the
entrance slit angular width and that of the exit slit or
detector element sets the resolution. The spectral resolu-
tion increases with decreasing slit or detector widths,
while the energy detected goes down, again, in a fashion
similar to that of the prism.

It is important to note that the effect of the slits (or
slit and detector aperture) can be modeled in the follow-
ing way. Given a monochromatic source filling the
entrance slit, the optics form an image of the slit at a
location on the exit image plane consistent with the grat-
ing equation shown previously. As an exit slit is scanned
across the image, a detector first records a signal that
increases, perhaps stays constant for a bit, and then drops
off to zero. Analytically this signal pattern equals the
convolution⊗ (ignoring the effects of imperfect optics):

whereS(θe) is the exit signal,a represents the half-width
of the entrance slit,b represents the exit slit half-width,
and k represents any scale factor between the entrance
and exit optics.

The case differs slightly for a detector array. The
detector array represents a set of spatial or angular sam-
ples, and if the detectors are fine enough, an output simi-
lar to the exit slit is obtained. Imagine that the detector
signals are read in groups whose total angular subtense
equals that of the exit slit already discussed. Imagine fur-
ther that a spectrum is developed by moving along the
detector array one detector at a time. This method is
equivalent to using the exit slit with tiny, but discrete
steps. Clearly the two cases yield similar results. In addi-
tion, from reference 7, the maximum resolution-energy
product occurs for exit and entrance slits (or images) that
are matched.

The effect of a polychromatic source is then a convo-
lution of the monochromatic exit response with the
source spectral distribution, all referenced to the exit
region. It is very important to note that anyspatial vari-
ability in the entrance slit is transformed to the exit slit
according to the spectral content. In addition, agrating
has dispersion only in the one dimension, while along the
nondispersive direction the grating acts as a mirror.

As stated by Jacquinot (ref.7), the relationship be-
tween energy throughput and resolution for a grating
monochromator can be developed as follows. Matching
the spectral width of the input and exit dispersionsα1/D1
andα2/D2 (whereD = dθ/dλ) yields the highest through-
put. Given this condition, the limiting resolutionδλ of

Figure 1.  Grating spectrometer.
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the monochromator isα2/D2 (= α1/D1). The maximum
flux being detected is then

whereS is the area of the grating normal to the input flux,
B is the source spectral radiance, τ is transmission, andΩ
is the solid acceptance angle at the grating.

Alternatively, with the valueβ representing the ver-
tical slit angular extent andα2 representing the disper-
sive direction angular extent,

where resolving power is given byℜ = λ/δλ. This result
says that output flux is inversely proportional to resolv-
ing power, expressing analytically what was alluded to
earlier.

In a typical case of a high-throughput system, e.g., a
Littrow mounting,SD2 = (2A sinφ)/λ, whereA is the area
of grating andφ is angle in incidence. This allows the
final result

For the grating with fixed resolution and collimating
optics diameter, increased energy throughput can only
come by increasing the slit size in the nondispersion
direction. Jacquinot states: “Practical limitations restrict
the acceptance angleβ to about 0.1 radian” (ref. 7). More
modern system designs may improve on this value, but
the conclusion is still valid as a practical baseline.

Interferometers

To compare the performance of the current DASI
interferometers with their grating competitors, one must
start somewhere near the beginning of interferometers as
instruments, e.g., the Michelson interferometer, and then
move on to the variations leading to the DASI. The mate-
rial here follows reference 8.

In certain situations, it is possible to see interference
fringes from nearly monochromatic light, and in some
cases, white light over restricted ranges. It is difficult to
achieve fringes from broadband light for the simple rea-
son that broadband light, though intense enough, repre-
sents a linear superposition of interference from many
spectral bands that hopelessly overlap and wash out the
fringes. Moreover, light arising from different areas of
the source is uncorrelated, so increasing the source size
does not usually intensify the fringes. Making the light
quasi-monochromatic enough by reducing the bandwidth
by filtering results in a lack of sufficient light in the wave
band of interest. If extended sources are used to increase

the available light, existing fringes are generally “washed
out” because the extended sources cause overlap of the
fringes. Fringes may still be visible, but they may
become localized.

If a partially reflecting mirror and set of reflecting
mirrors are arranged so that light passes in two different
legs (fig. 2), one or both of which have adjustable path
lengths, the result is the Michelson interferometer. The
partially reflecting mirror divides the light into two
(equal) amplitude components, each of which recom-
bines with itself at some exit plane. Following the path
from any point on an extended source for the Michelson,
one finds fringes formed by the interference of all paral-
lel rays from all parts of the source. The apparent loca-
tion of these fringes is at infinity. In reality the fringes
form behind a lens focused at infinity. Because each bun-
dle of rays from the source splits in two and all rays that
are parallel to one another come to a focus together,
yielding what are called “fringes of equal inclination,”
they are said to be “localized at infinity.” All regions
have matched ray pairs regardless of the size of the
source. Thus, the Michelson interferometers, and some
relatives, have the characteristic of their fringevisibility
beingunaffected by sensible source size extension. The
intensity of the fringes goes up, while their contrast
remains high.

The Michelson operates by having one of its plates
displaced so that the distance traversed in one leg is
longer than the other. Fringes for the Michelson take the
form of concentric rings whose spacing varies inversely
as the square of the angle from the central fringe or ring.
As the distance in one leg varies, the fringes contract or
expand from the center.

Placing a detector at the fringe center, illuminating
the interferometer with narrow band radiation, and

Φ τBSΩ=

Φ τBSα2β=

Φ τBSλβD2/ℜ=

Φ τB2Aβ φsin( )/ℜ=

Figure 2.  Michelson interferometer.
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varying the path length differential in some linear fashion
with time yields a sinusoidal pattern. Polychromatic radi-
ation yields a linear sum of sinusoids whose period is
determined by wavelength and path length difference.
The overall effect is to generate a cosine Fourier trans-
form of the source spectral content linear in wave num-
ber. Note that out along the fringe plane (in the focal
plane of the lens) the same Fourier transform exists,
although with a nonlinear scale. The Michelson interfer-
ometer, with its ability to accept large source sizes, has a
considerable advantage as a nonimaging spectrometer, as
will be seen later.

Important Result: Note carefully that the corollary to
the wide acceptance angle for fringes of equal inclination
in the Michelson is the loss of spatial information. With
the exception of a source at a great distance, all parts of
the source are distributed uniformly in the rings, and spa-
tial detail is lost.

Another property of the Michelson is important in
understanding the DASI. If the mirrors on the Michelson
are set at zero differential path length, but cocked at a
small angle, the fringes become nearly parallel and are
aligned along the apex of the virtual air wedge formed by
the two mirrors.

If the Michelson is carried one step farther, an inter-
ferometer that has linear fringes can be formed (the Sag-
nac interferometer illustrated in fig. 3). In the Sagnac,
there is a beam splitter as before; however, the divided
light is directed not back at the beam splitters from which
it came but to the twin mirror in the interferometer. This
configuration causes the resultant twin rays to traverse
nearly the same path but to be displaced laterally. Thus,
the light appears to come from two laterally displaced
parallel sources to yield fringes of equal inclination
localized at infinity. However, unlike the Michelson, the
Sagnac fringes are parallel lines and not concentric
annuli. Like the Michelson, the Sagnac has high fringe
visibility with extended sources.

Moving one of the plates in or out from some point
of approximately equal distance generates a Fourier
transform in the Sagnac. A monochromatic source would
produce a linear fringe pattern or, in a detector moving
across the pattern, a sinusoidal signal dependent on the
wavelength of the source and the movement of the plates:

whereS(x) is the detected signal,L is  times the mir-
ror displacement,θ is the lens incidence angle,f is the
lens focal length,x is the distance in the focal plane, and
σ is the wave number. Other than the constant term, the

detected signal is then proportional to the cosine trans-
form of the source spectral distribution.

For the Sagnac and some other interferometers with
parallel fringes, it is obvious that a detector array could
sample the fringes. With the inherent transform scale lin-
earity of the Sagnac-type implementations, interpretation
would be simplified with respect to a Michelson.

A worthwhile digression here considers the two
alternative implementations for Michelsons, Sagnacs,
and others. Material presented earlier noted that Michel-
sons could have sources of large extent without reducing
fringe visibility. When operated in this fashion, the
fringes are localized at infinity and distributed over a
plane behind a lens focused at infinity. An alternative
implementation, the Twyman-Green interferometer in
figure4, results when the Michelson is illuminated by a
collimated source of finite, but small, angular subtense.
In this case the annular fringes are compressed into a
region set by the angular subtense of the source size. An
interference pattern is generated by moving the plates
and observing the detector output. The latter case is
appropriate for a single detector, whereas the extended
source case would be appropriate for a detector array of
concentric annuli. In both cases, the mirror plates of the
interferometers generate fringes that appear to be local-
ized at infinity. If the plates of the interferometers are
close to zero displacement and cocked to generate non-
parallel exit rays, the fringes become localized in the
virtual wedge formed by the mirrors.

The relationship quantifying interferometer resolu-
tion and throughput can be found by following Jacquinot
(ref. 7). Two cases are noted, one developed by Jacquinot
in reference 7 and one by Vanasse and Sakai (ref. 9).
Both are related and important to DASI. Jacquinot based
his resolution argument on a Fabry-Perot etalon, with

S x( ) S σ( ) 1 2π θsin( )σL[ ]cos+{ } σd∫=

S x( ) S σ( ) 1 2πxσL/ f( )cos+[ ] σd∫=

2

Figure 3.  Sagnac interferometer.
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further discussion in reference 7. He did not present a
direct analysis applicable to the DASI case. Vanasse and
Sakai discuss the finite aperture case for the collimated
Michelson (Twyman-Green) interferometer and devel-
oped the following result. Given the circularly symmetric
acceptance half-angleαS, the relationship to resolvance
ℜ can be written (ref. 9) as

Noting thatΩ is , the relationship becomes

This analysis is based on the fact that, as the incident
light is allowed to move off axis by an extended source, a
phase shift develops that is dependent quadratically on
the off-axis angle. Setting this developing phase shift
equal toπ/2 gives the desired relationship. The relation-
ship between resolution and solid angle expresses analyt-
ically the advantages of interferometers. Because
étendue is set by the entrance pupil, usually some tele-
scope in our case, it is of great advantage to have the
spectrometer match the étendue of the front optics. For
mirrors and lenses, the étendue of optics viewing an
extended source can be much larger than that which is
compatible with a grating monochromator. The prism
monochromator is even less capable than the grating sys-
tem. This front-end optics and monochromator mismatch
presents less of a problem for point sources below the
resolution limit for the front-end optics because the éten-
due is forced to be small.

Important Result: Both angular dimensions of the inter-
ferometer entrance solid angle can contribute energy to
the interferogram. On the other hand, the spectral resolu-
tion reduces only weakly from the angular subtense. As
shown for the grating monochromator, one angular
dimension trades resolution directly for greater angular
acceptance. The other dimension (β in the grating equa-
tion) can be increased only to a value of about 0.1 rad.
Thus, the throughput advantage of interferometers over
gratings is approximately 3.4/β (ref. 1), or about 34 for
the best grating monochromators.

When required to perform as both spectrometer and
imager, the interferometer must sacrifice some of its
étendue advantage, as described in the following.

Parallel fringes, such as those caused by a thin air
wedge, appear to come from areas of equal optical thick-
ness and are called “fringes of equal thickness.”The ter-
minology “fringes of equal thickness” appears to
originate from Fizeau fringes or Michelsons with inclina-
tion in the mirrors. In the Sagnac, fringes do not arise
from contours of equal thickness but from laterally dis-
placed beams or sheared source images whose differen-
tial path length varies with angle.

Resolution reduction in the Sagnac comes in a
related though significantly different fashion from that in
the Michelson. Any detector that spans a significant part
of a fringe yields a signal with reduced modulation. Res-
olution reduction affects a particular wave number and
those above, whereas lower wave numbers are less
affected. Thus, in this case as well as for the Michelson,
resolution reduction is less clear-cut in interpretation
than might be desired.

The Sagnac also has an acceptance angle effect that
yields blurring in the interferogram similar to that arising
from a finite detector size (as shown in appendix A). The
effect comes from the fixed lateral displacement of the
two apparent sources in the presence of increasing accep-
tance angle for a Sagnac with the source near the optics
focal point. In the Twyman-Green case, a similar effect
occurs coupled with a defect of focus impact that can
limit performance. Taken together, either the detector
size or acceptance angle geometric effects yield an
equivalent inverse resolvance versus (linear) acceptance
angle trade-off. Reducing detector size only increases
resolvance (without regard to signal-to-noise consider-
ations) up to the point where the blurring effects
predominate.

In system modeling terms, the resolution reduction
corresponds to multiplying the reconstructed source
spectrum by a term of the form (sinx)/x (sinc function)
whose first zero is set by the reciprocal of the angular
subtense of the detector or angular blurring combination,

Figure 4.  Twyman-Green interferometer.
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whichever comes first. As shown in appendix A, the sinc
function corresponding to a finite aperture size of angular
dimensionα causes the reconstructed spectrum to be
multiplied by a sinc function whose first zero occurs at
σ = 1/lα, wherel is the path difference.

For interferometers, the maximum modulation
frequency sets the ultimate resolution in the transform
process. This maximum modulation, in turn, comes from
the maximum phase differential. The reconstructed trans-
form is convolved with (smoothed by) a sinc function
whose half-width isδσ = 1/l θmax.

Therefore, the resolvance can be written as

where the maximum resolution is limited by the total
possible acceptance half-angleπ. Note the result is simi-
lar to that of the Michelson except the angle is not the
solid angle subtended by the detector or other spatial
integrating effect.

Important Result: For the Sagnac and similar interfer-
ometers, the spectral resolution isnot inversely related to
the acceptance solid angle. Rather, the resolution is
inversely related to a single-dimension angle only.
Therefore, the étendue for a square pixelAΩ is inversely
proportional to the resolution squared—a very different
result from that of the Michelson interferometer.

DASI Implementations

As noted earlier, linear fringe interferometers using
detector arrays existed before the current DASI version
(refs. 5 and 6). The common element in the implementa-

tions consists of some interferometer form that yields
linear fringes plus a linear detector array. Thumbnail
descriptions of some representative DASI versions that
have been proposed follow.

Figure 3 shows a Sagnac form of DASI in which the
light traverses a common path after being amplitude
divided at a beam splitter. If the mirrors are set at
unequal distances from the beam splitter, two laterally
separated apparent sources arise. The apparent sources
produce linear fringes at the back focal plane of the
imaging lens; therefore, they are said to be “localized at
infinity.” There is no limitation perpendicular to the
detector array except the size of the beam splitter lens-
mirror combinations.

Another implementation of a DASI, illustrated in
figure 5, uses birefringent prisms. Several versions utiliz-
ing birefringence are possible, but all are similar to the
one using the Wollaston prism. In the Wollaston form,
light is collimated from a source and passes to a prism
made of two pieces of crossed birefringent material.
Ordinary (o) and extraordinary (e) rays are split by a
small angle in the prism. The rays are split across the
entire height of the prism, with the effective path length
difference between the rays approximately linearly
related to a position along the height of the prism. The
rays appear to be “localized” in the prism near the inter-
face between the two halves. The rays are brought to a
focus by a second lens with the linear detector array in
the focal plane. Cylindrical lenses can be used to con-
dense the parallel fringes onto the array for better signal-
to-noise-ratio.

ℜ σ/δσ 2θmax/α 2π/α≤= =

Figure 5.  DASI with Wollaston prism configuration.
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DASI Claims

The collected literature, published and unpublished
for DASI (refs. 1–4), has been surveyed for the claims
made for DASI. Because there is considerable repetition,
the claims have been collected into three main groups
that capture their essence (table I).

Three major claims can be summarized as follows:
(1) more throughput for a given resolution, (2) a better
system response function, and (3) more benign system
characteristics, including the multiplex advantage.

Claim 1—Higher Étendue

Claim 1 refers to the known fact that higher étendue
is available in Michelson interferometers when compared
with grating spectrometers. As noted earlier,Jacquinot
(ref. 7) developed a comparison between Fabry-Perots
(F-P) and grating monochromators that showed that the
ratio in throughput could be expressed as

References 9 and 10 further show that this result also
holds for interferometers, such as Michelsons and others
that generate annular fringes, as well as for Fabry-Perots.

In an implementation that takes advantage of the
properties of interferometers or gratings, the design
would attempt to set the instantaneous field of view
(IFOV) with some foreoptics and utilize the largest mir-
ror or lens that is compatible with practicality con-
straints. Because the étendue is constant, a small IFOV
could be converted by magnification to something com-

patible with the resolution of the interferometer. Magni-
fication reduces the area required in the interferometer or
grating and increases the IFOV. Because resolvances of
at least several tens or a few hundreds would be
employed, the angular subtense would be from one to a
few tenths of a radian, consistent with considerable scal-
ing gain. Large-diameter foreoptics with small IFOV’s
are natural companions to smaller area spectrometers
with moderate spectral resolution. For matched areas
and resolutions, the interferometer offers approximately
30 times the throughput of the grating. The increased
throughput can be used to increase the signal-to-noise
ratio, to reduce size, or for a combination of both. (It
should be noted here that in the photon-noise-limited
applications usually addressed in the literature, the
signal-to-noise gain from the throughput advantage
would be around 5.5.) Linear dimension gains will be far
less impressive in photon-noise-limited cases. Still, the
diameter of the grating system would have to be
5.5times greater than that for the interferometer in the
photon noise case.

As shown in appendix A for Sagnacs (or Twyman-
Greens with wedged mirrors) producing parallel fringes,
the relationship between resolving powerℜ and accep-
tance angle is different from the Michelson case. Either
the size of the detector angular subtense or the fringe
contrast reduction from increased acceptance angle
“blurring” causes a reciprocal relationship of the resol-
vance and acceptance angle. This is quite a different case
from the Michelson or Twyman-Green case with parallel
plates. Moreover, as shown in appendix A, there are
additional effects from defocus on the higher spatial

Table I. Various Claims of Performance Advantages for the DASI System

1. Much higher étendue for equal resolution (ref. 2, p. 5)
10×–100× greater signal to noise at equal field of view (ref. 1, p. 418)
Transmits more than 1000× more photons at same resolution and equal apertures (ref. 2, p. 5)
Étendue greater than 1000× at given spectral resolution and equal aperture (ref. 2, pp. 5 and 10)
Corollary:  Can trade étendue for more compact size? (ref. 2, p. 10; ref. 3, p. 2).
Corollary: Field-widened versions have accentuated advantages (ref. 2, p. 5; ref. 1, p. 421).

2. Data has optimum sinc instrument sampling function (ref. 1, p. 419).
Frequency response is a rectangle (ref. 2, p. 5).
Corollary:  DASI has 3× resolution factor or more (ref. 2, p. 6).
Corollary:  Due to 3× resolution and sinc function, one-third the number of samples are required (ref. 2, p. 10).
Corollary:  Due to one-third samples, DASI achieves high signal to noise or higher resolution for same data volume (ref. 2, p. 10).

 3. Miscellaneous systems level advantages
System errors are known and correctable (ref. 2, p. 11)
Superior linearity, throughput, dynamic range, spectral range, and fidelity (ref. 3, p. 2)
Can use heterodyning (ref. 1, p. 419)
Constant (wavelength) efficiency (ref. 1, p. 419)
Transient event detection capability (ref. 2, p. 9)
Multiplex advantage (ref. 2, p. 2)

F-P/grating 3.4/β≈
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frequency components of the transform for the
Michelson and Twyman-Green. The Wollaston version
case is similar when one realizes that the Wollaston is
equivalent in a systems sense to a Twyman-Green with
wedged mirrors.

Given these considerations, the ratio of Sagnac inter-
ferometer to grating monochromator detected power can
be written:

whereτ' is the average transmission across one fringe
half-cycle, equal to 1/2π, and the factor 2 takes into
account that the peak modulation is only 1/2. For the
grating, following reference 7, a Littrow mounting and a
blaze angle of 30° are assumed. However, when theβ
dimension must be allocated to spatial resolution, both
angular subtends will be set by the required spatial reso-
lution and will, therefore, be limited by optical quality
considerations. The Michelson with annular fringes has
an acceptance angle advantage at the cost of spatial infor-
mation. The parallel-fringe DASI family gains the spatial
dimension at the cost of reductions in the acceptance
angle advantage. Put another way, when the interferome-
ter must perform spatial imaging, it must sacrifice part of
its superiority over the grating monochromator. There-
fore, any comparison between interferometers and grat-
ings used in spectrometer and imaging mode must
compare compatible instruments.

The final result may be stated as follows: The
parallel-fringe Sagnac-like interferometers are better
than the grating only in the ratio of their respective “non-
spectral resolution” angular subtends. Using this accep-
tance angle advantage for Michelsons (ref.4) in forming
comparisons, as has been done for DASI (refs.1–4),
amounts to comparing apples and oranges.

Claim 2—Optimum Sinc Function

The claim that DASI’s frequency response is a rect-
angle comes from the fact that all components of the
Fourier transform at the detector are weighted equally. In
Fourier transform terms, systems that do not exactly rep-
licate the input have system responses that are functions
which modify the signal Fourier components. The
weightings on the components for real systems tend to
decrease with larger frequency values of the transform
variable. A constant weighting, or “flat” frequency
response, is equivalent to convolving the input function
with a sinc function whose width is inversely propor-
tional to the highest value of the frequency. This effect
was discussed in the interferometer section. The greater
the value of the highest Fourier component, the less
smoothing of the data is required and the more detail is
available.

Whereas reproducing fine detail is important, the
instrument sinc function, which is not very well behaved,
exhibits the Gibbs phenomenon, or “ringing.” Thus, the
high-resolution benefit of having a flat response is bal-
anced by the danger of generating false detail. In
practice, many interferometer spectrometers utilize
apodization windows to avoid the ringing and conse-
quent undesirable false detail (ref. 9).

The need to apodize reduces the flat response to one
that attenuates the high-frequency detail in just the same
fashion that the triangular response of a grating mono-
chromator smoothes the direct spectrum. A typical
apodization profile is a triangular ramp that goes to zero
at the maximum frequency and is normally applied in
postprocessing of the data. As a result, DASI’s (as well
as other Fourier transform spectrometers) realize the
“flat frequency response” at the expense of potentially
erroneous spectrum interpretation.

Claim 3—Multiplex and Other Advantages

This claim includes several smaller elements and one
that appears to be a major claim—the multiplex advan-
tage. Note that in the DASI references the multiplex
advantage was also presented as a multiplexdisadvan-
tage.To see how this might be so, one must first under-
stand the origin of the multiplex advantage.

Grating or prism spectrometers sample the spectrum
directly with a noise measurement at each sample point–
time interval. Fourier transform spectrometers, on the
other hand, observe a linear sum of elements of all
portions of the input spectrum. When reconstructed, the
presumably uncorrelated noise samples combine inco-
herently, while the signal adds coherently. This result is
commonly referred to as the Fellgett, or multiplex,
advantage (ref. 11).

With early detectors and with some modern detec-
tors in certain wavelength regions, detector and amplifier
noise represent the major noise contamination of the
signal. For some time, quantum-noise-limited photo-
multipliers were restricted to the visible and ultraviolet
region of the spectrum. In the case of detector noise inde-
pendent of the incoming signal, there is a multiplex
advantage.

For modern detectors, such as silicon charge coupled
devices (CCD’s), HgCdTe-CCD hybrids, and others, the
detector noise is commonly quantum-noise-like, depend-
ing on the square root of the detected photocurrent.
Under these conditions, Kahn (ref.12) has shown that
the multiplex advantage disappears to be replaced by a
noise dependence on wave number that is different
between the interferometer and the grating spectrometer.

Sagnac/grating 2πτ'BAβS/ℜ( ) BAτβG/ℜ( )≈
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Kahn showed that the signal-to-noise ratio for an inter-
ferometer, when compared with a sequential grating
monochromator in photon-noise-limited operation,
favors the interferometer in spectral regions where the
spectral content is more than twice the average spectral
intensity. Modern technological implementations give
the grating monochromator an advantage if a detector
array is used in lieu of a rotating grating or movable
detector. The detector array makes possible a signal-to-
noise increase equal to the square root of the number of
spectral samples and gives a multichannel advantage
analogous to the multiplex advantage. With both the
DASI and the grating monochromator taking advantage
of detector arrays, the results of Kahn clearly apply
equally to the nonmechanically scanned multiple detec-
tor case. Appendix B presents the sampled data version
of the analysis in Kahn for the cases of monochromatic,
narrowband, and broadband sources, as well as for
photon-noise- and detector-noise-limited conditions. As
shown in appendix B, this redistribution can have some
beneficial effects, depending on the type of spectrum
(lines or continuum) being observed. Single monochro-
matic lines yield a high signal-to-noise ratio with noise
redistributed throughout the reconstructed spectrum.For
this case, were it not for other limitations described in
appendix A, as well as in this text, the resolvance would
continue to increase with increasing numbers of detec-
tors without loss of signal-to-noise ratio. For multiple
monochromatic sources, the redistribution of the noise
punishes the signal-to-noise ratio for the weaker lines.

For the case of broadband sources, the redistribution
of noise degrades the signal-to-noise ratio of absorption
features. The signal-to-noise ratio also decreases with an
increased number of detectors sampling the interfero-
gram. Because observing such spectra is a common inter-
ferometer application, the DASI has been rightly
assessed (ref. 4) as having a “multiplex disadvantage” for
this case.

For the case of detectors withD*-like characteris-
tics, the DASI signal-to-noise ratio would show the mul-
tiplex advantage but without the throughput advantage of
the parallel-plate Michelson or Twyman-Green, as noted
earlier.

Concluding Remarks

The digital array scanned interferometer (DASI),
and other proposed equivalents, represent a new wrinkle
in the long-standing contest of superiority between
advocates of grating spectrometers and interferometers.
The very real throughput advantage of Michelson inter-
ferometers over grating systems results from the two-
dimensional acceptance angle versus resolvance inherent
in Michelsons. The grating systems, on the other hand,

are at a disadvantage with respect to this two-
dimensional interferometer acceptance angle. The grat-
ing resolvance is inversely proportional to one of the
grating acceptance angles, while the other dimension is
limited by practical considerations. However, when the
interferometer system is required to yield spatial as well
as spectral information, the interferometer implementa-
tions have acceptance angle limitations similar to the
grating system.

The Michelson can be used to realize the throughput
advantage and simultaneously image by point scanning
using one pixel. To do so, the system must incorporate
the complexity of the spatial scanning system, which
adds mechanical complexity on top of the internal
mechanical scan required. The throughput factor of over
30 represents a factor of only about 6 in improved signal-
to-noise ratio for photon-limited detectors. Moreover,
use of an array with the grating spectrometer limits the
interferometer advantage. Spatial scanning to yield the
spatiospectral information further reduces the interfer-
ometer’s relative performance.

The following three claims are detailed in the discus-
sion. Michelson interferometers, which inherently have a
two-dimensional acceptance angle, yield a throughput
advantage. However, DASI’s have no great throughput
advantage over grating systems if equal spatial imag-
ing is required of both. Therefore, this claim is not
substantiated.

The flat response of the DASI’s transform character-
istic is real. However, the flat response is accompanied
by the possibility of misinterpretation of the side lobes
that result from such a response in the retrieved spec-
trum. In practice, interferometers often have an instru-
ment response function that is modified to eliminate the
Gibbs phenomena by apodizing or reducing the high-
frequency components. Moreover, the recovered spec-
trum can be subjected to an attenuation function,
depending on the detector size or other acceptance-angle-
dependent effect that must be corrected. Thus, this claim
is substantiated with reservations.

The DASI claims several other benefits, including
the multiplex advantage. As shown previously, DASI has
excellent performance when detecting a handful or so of
monochromatic (line) sources. The signal-to-noise ratio
does not decrease with increasing numbers of detectors
with either photon noise orD*-like detector noise depen-
dence (ignoring some other noise effects that do not scale
in like fashion). However, in the case of broadband
sources, the transform-induced redistribution of noise
punishes the signal-to-noise ratio of absorption features.
A grating does not produce this undesirable effect.
Therefore, with the exception of detector-noise-limited
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conditions and some line-source applications, this claim
is not substantiated.

As to the advantage of detection of transient events,
array-based grating monochromators have this property.
As to superior linearity, the high value for the low-
frequency elements, i.e., the central maxima, of the inter-
ferogram would challenge the linearity of detectors more
than the grating monochromator. The fall-off in higher
frequency components in the interferogram may require

the complexity of gain scaling to fully develop the inter-
ferogram. The claim of known and easily correctable
system errors is certainly not the case in at least one of
the main DASI implementations, the birefringent
Wollaston interferometer. Therefore, this claim is not
substantiated.

NASA Langley Research Center
Hampton, VA 23681-0001
March 6, 1996
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Appendix A

Interferometer Resolution, Defocus, and Source Size Effects

The limitation on resolution for an interferometric spectrometer with finite angular subtense discussed in reference 9
forms the basis for much of the DASI’s claimed advantages. For the case in this paper, the results must be modified sig-
nificantly. It is useful to summarize the reference 9 results and then to develop the modified results. The case analyzed in
reference 9 is that of aTwyman-Green version of the Michelson configuration. The results can be more readily illus-
trated with a Michelson system.

In a Michelson, the fringes are concentric rings about the optical axis. The transform scale is nonlinear, even for
small angles, but is easily corrected. Placing an aperture in the focal plane of the exit lens causes a piece, or more, of a
fringe to pass to a detector. As shown in reference 9, the effect is to multiply the transform by a factor:

(A1)

which has its first zero atσmax = 2π/LΩ and whereL is the mirror path length. In words, the modulation of the interfero-
gram ceases to exist for a certain combination of solid angle and plate separation. Thus,σ must be less than some rea-
sonable fraction ofσmax. On the other hand, the maximum range of the transform variable determines the ultimate
resolution for the interferometer.

(A2)

With ℜ = σ/δσ, the resolvance can be written as

(A3)

or for a small solid angle,

(A4)

This final result serves as the underpinning for the major claims for DASI.

For the case of Sagnac or other interferometers that produce linear parallel fringes, the finite aperture or detector
subtense causes an analogous effect. Assume that the source is uniform and that the detector has an angular widthα × β
in length. The signal detected will be the integrated value over the detector (ignoring the constant term that is an addi-
tional signal):

(A5)

(A6)

The first zero of the sinc function is atσ = 1/αl. After inversion, the spectrum will be multiplied by the sinc func-
tion, which forces the spectrum to zero at the pointσ = 1/αl.

There is also a maximum transform variable that, assumingθ to be small, isθl. Analogous to the Michelson case
shown, the end result is toconvolve the inverted interferogram with a sinc function whose first zero 1/2θl sets the ulti-
mate resolution for the spectrum. The relationship between angle and resolvance then becomes

(A7)

or, with θ no larger thanπ/2, becomes

(A8)

F σ( ) sinc σLnΩ/2π( )=

δσ 1/lmax( ) 1 Ω/2π–( )=

ℜ 1 Ω/2π–( )2π/Ω=

ℜ 2π/Ω=

S θ( ) θ β S σ θ,( ) 2πσ θsin( )l[ ] σdcos∫d∫d

θ− α/2( )

θ+ α/2( )

∫=

S θ( ) αβ παlσ( )/ παlσ( )sin[ ] S σ( ) 2πσ θ( )lsin[ ] σdcos∫{ }=

ℜ 2θlσ=

2θl /αl=

ℜ π/α=
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Picking up theβ dimension, the results for the acceptance angle versus resolution are

(A9)

and for the étendue results are

(A10)

(A11)

This final very important result shows that modifying the interferometer to have parallel fringes by using a Sagnac
with fringes localized at infinity, with a Michelson with wedged mirrors with fringes localized in the wedge, or a
Wollaston polarization interferometer produces the same effect: The acceptance angle is inverse to the resolvance.

Defocus Effects

In a Michelson interferometer with tilted mirrors, which gives a set of linear fringes, a defect of focus causes a limi-
tation on spectral resolution with increased aperture. As shown in figure A1, mirrors M1 and M2 tilted at angleΘ would
have fringes localized at the surface of M2 for on-axis rays that represent a point source on the axis. If the source is
extended to an angular dimensionΨ, the source half-angle, then the reflected ray pair seems to come from a common
point that is offset in∆X and∆Y as shown. The following equations determine the offset values:

(A12)

(A13)

From the shaded triangle in figure A1,

(A14)

(A15)

Figure A1.  Definitions of defocus for air wedge interferometer.
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From these equations, we can solve for∆X and∆Y in terms of L (the interferogram length from the mirror apex),Θ,
andΨ, giving

(A16)

Using the small angle approximation:

(A17)

From the preceding equations, one can see that the greatest delta error is∆Y, but this finding is somewhat mislead-
ing. The∆Y or the defocus term is not, in itself, the critical factor but rather the blur diameter in the focus plane M2 that
results from the defocus. This diameter is the defocus times the apex angle 2Θ, giving

(A18)

The blur diameter in turn sets the sample interval∆Xsample and detector size in a detector array (along with the dif-
fraction and geometric blurs of the optics which are ignored here). The sample interval and the total length of a two-
sided interferogram L0 are related to the spectral resolutionℜ by

(A19)

Then the allowable source subtense is proportional to the inverse of the spectral resolution:

(A20)

Laterally Displaced Source and Acceptance Angle Limitations

A fixed source splitting (laterally displaced) in a Sagnac or wedged Twyman-Green coupled with increasing source
size causes an effect at the detector plane equivalent to integrating over the detector acceptance angle. This effect comes
from a source width phase shift in the collimated light reaching the detector plane. The separation of the coherent
twinned rays yields the interferogram as expected, but contributions from distributed pairs across the source incur addi-
tional phase shift from the increasing total path length to a particular point on the detector plane. This phenomenon,
essentially an obliquity effect, causes the “phase zero” of the interferogram to shift linearly with increasing acceptance
angle.

For a lateral displacement interferometer, such as the Sagnac, the effects of an increasing source subtense can be
calculated. The apparent source displacement distanced and the source sizeD can be related to the angles between the
plane waves (Θ andΘ') exiting from the monochromator collimating lens, as shown in figure A2. Using the summation
of two plane waves,E1 andE2, the intensity of the interferogramI is

(A21)

whereE = A0e
ik'r' vector intensity is

(A22)

∆X L Θ 2Θ Ψ 2Ψ Ψ 2Θ–( )sinsinseccsctan=

∆Y L Θ 2Θ Ψ 2Ψ Ψ 2Θ–( )cossinseccsctan= 



∆X LΨ2
=

∆Y LΨ= 



Blur diameter due to defocus 2LΨΘ ∆Xsample= =

ℜ L0/∆Xsample 1/2ΨΘ (L0 L)= = =

Ψ 1/ℜ∝

I E1 E2+( ) E1 E2+( )*
=

I 2A0
2

1 k xix yiy+( )[ ] Θi xcos Θi ysin+( )[cos+{=

Θ'i xcos Θ'i ysin+( ) ] }–
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and where, from figure A2 and other substitutions

(A23a)

(A23b)

(A24)

(A25a)

(A25b)

Integrating over the source sizeD from zero toD0 and fixingx at the detector plane distanceX0, we get

(A26)

(A27)

The preceding equation states that the interferogram is limited by a sinc function that isdependent on not only
thesource apparent displacement but also the source size.The first zero is atD0 = F2/σdX0 or, in angular terms,
Θs = F/σdX0. If  the zero of the sinc function can be written asσmax = 1/(2Θsd), and the source subtense limits
the interferogram visibility andmaximum upper usable wave number. The sinc function plays a role similar to the
finite aperture of the detector elements thereby causing a linear inverse relationship betweenacceptance angle and
resolvanceℜ.

Figure A2.  Definitions of aperture function calculation.
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Appendix B

Signal-to-Noise Relationships

The multiplex advantage for Sagnac and Wollaston prism versions of DASI’s can, in reality, be thought of as disad-
vantages when compared with moveable mirror interferometers or grating instruments. This rationale results from the
fact that the DASI’s share the incoming radiation with all theN elemental detectors. The signal-to-noise ratio can then be
recovered in the inversion process because the signal to noise will increase. However, it increases only as the square root
of the number of detectors. If the signal drops below the detector-amplifier inherent noise and away from the photon-
noise limit, the residual influence of the nonphoton noise more or less punishes the recovery of the signal-to-noise ratio.

In view of that information, the results from Kahn now can be applied to show that the transform instrumentsmay or
may not have an advantage over sequential grating instruments. As noted in reference 12, in thephoton-noise-dominated
regime, the sequential transform instrument has no general advantage over a sequentially scanned grating instrument, all
other things being equal, including throughput. Spectra with great fluctuation (over twice the average value) favor the
transform instrument, whereas more benign spectra favor the grating instrument.

For detector array grating instruments, the results of Kahn (ref.12) indicate that the grating instruments would be
superior to sequentially transform instruments by the square root of the number of samples in the imaging cases of inter-
est here.This result amplifies thecomment in reference 4 concerning the multiplex disadvantage of DASI’s, which had
been at odds with other claims for a multiplex advantage.

The relationship of noise generated during the data-taking process was presented in Kahn (ref. 12), but it is worth
deriving this result in the array case. Assume that the detectors are in the photon-noise-limited case, yielding Poisson
noise uncorrelated detector to detector. The detection process consists of integrating generated charges arising from inci-
dent photons. The signal-generating process can be written as having an average value and a standard deviation around
that mean.

With unity quantum efficiency and in unit time, write the detected signal charge as

(B1)

The inversion process involves multiplying by cosines of various frequencies, summing over the frequency sample
points, and scaling:

(B2)

Inserting the expression for the transformed spectrum gives

(B3)

(B4)

Rearranging and using the relation

S K( ) S σ( ) 1 2πKσ( )cos+[ ] σd
0

∞

∫=

S' σ( ) S K( ) 2πKσ( )cos

K=0

K=Kmax

∑=

S' σ( ) S µ( ) 1 2πKµ( )cos+[ ] µ 2πKσ( )cosd
0

∞

∫
K=0

K=Kmax

∑=

S′ σ( ) S µ( )1/2 2πK µ σ+( )[ ] 2πK µ σ–( )[ ]cos+cos{ } µd∑
0

∞
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gives

(B5)

whereKmax is nowN, the number of transform samples, times the smallest intervalδk.

If N is reasonably large, the integrand exists only aroundσ = µ, scaled by the peak value of the (sinx)/x term (N + 1)
and within a width of 1/δk(N + 1).

Thus, the inversion process gives the input spectrum, modified by a scale factor of (1/2δk). The constant term in the
interferogram yields a similar term, except that it exists forσ = 0 and has a value equal to the integral of the spectrum
over all wave numbers. This term is also a constant. Note that this term represents the average value for the spectrum and
has the effect of generating noise.

Under the assumption that the detector noise is a Poisson process, as would be the case for photon-noise-limited per-
formance, the noise can be calculated. The analysis can be simplified by noting that the noise in any element of the sam-
pled spectrum is assumed to be independent from the other spectrum elements. Thus, when calculating the variance,
only signals from the same spectral element contribute:

(B6)

(B7)

Inserting forS(k) and remembering to carry the constant term because it represents the background signal results in

(B8)

Expanding the integral and expressing the cosine products as sum and difference frequencies, as done in equa-
tion (B8), yields

(B9)

where∆(σ) is a delta function around zero wave number (dc). The term affecting the reconstructed spectrum is the first
and gives a root mean squared (RMS) of

(B10)

Multiplying and dividing by the effective wave-number interval∆σ in the integrand allows the noise to be expressed
with respect to an average spectrum:

(B11)

Remember thatNδk is the wave-number span whose reciprocal is the minimum resolutioninterval δσ. Therefore, the
signal-to-noise ratio can be written:

(B12)

S' σ( ) 1/2 µ S µ( ) πNδk µ σ–( )[ ]cos{d
0

∞

∫=

πδk N 1+( ) µ σ–( )[ ]sin× / πδk µ σ–( )[ ]sin }

Equivalent function of µ σ+( )+ 


S' σ( ) 1/2δk( )S σ( )=

Sn
2 σ( )〈 〉 SF( )2

S k( )S k'( ) 2πkσ( ) 2πk'σ( )coscos∑∑〈 〉=

Sn
2 σ( )〈 〉 SF( )2

S k( )cos
2

2πkσ( )∑=

Sn
2 σ( )〈 〉 SF( )2

S µ( ) 1 2πkµ( )cos+[ ] µd
0

∞

∫ 
 
 

cos
2

2πkσ( )∑=

Sn
2 σ( )〈 〉 2Nδk

2 µS µ( )d∫ 2δk
2 µS µ( )d∫ ∆ σ( ) δkS 0( )+ += δkS 2σ( )/2[ ] + δkS 2σ–( )/2[ ]+

Sn
2 σ( )〈 〉

1/2
2N( )1/2δk µS µ( )d∫

1/2
=

Sn
2 σ( )〈 〉

1/2
2

1/2
Savg

1/2
N

1/2δk∆σ1/2
=

S σ( ) Sn
2 σ( )〈 〉

1/2
⁄ S σ( )δσ 2Savg∆σ/N⁄=
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Noting that the highest value for∆σ is 1/δk and forδσ is 1/Nδk, the final result is obtained:

(B13)

Three cases follow to illustrate these results: (1) a monochromatic source, such as a laser, (2) a broadband source
typical of black bodies either viewed directly or in reflection, and (3) a detector-noise-limited case.

Monochromatic Source

Let S(σ) = U0(σ0) with σ0 < σmax. Then the transform can be written:

(B14)

Invert by using

With kmax = Nδk, the detector subtended angle ∆, andki = iδk, the inversion can be written:

(B15)

(B16)

At σ = σ0, S(σ) = (N + 1)δk∆ and has a full width of 1/(Nδk) defined by first zeros of the function. The area of the
function is approximately∆ from the height-width product equivalent to the unit area of the delta function monochro-
matic source, but reduced by the detector angular subtense.

The signal-to-noise ratio from equation (B13) is

(B17)

From this result, it appears that a monochromatic source has a signal-to-noise ratio that is independent of the angular
subtense of the individual detectors.

Broadband Source

Assuming that a broadband source signal-to-noise characteristic can be illustrated by a constant value of spectral
irradiance, the result from equation (B13) can be used to yield

(B18)

S N⁄ S σ( )δσ 2Savgδσ⁄=

S ki( ) ∆ 2πkiσ0( ) π∆σ0( )/π∆σ0sincos[ ] 1+{ }=

S σ( ) 2δk S ki( ) 2πkiσ( )cos

ki=0

kmax

∑=

S σ( ) 2δk∆ 1/2 2πiδk σ σ0–( )[ ]cos{∑=

2πiδk σ σ0+( )[ ]cos }+

(2πiδkσ)cos∑+ 


S σ( ) 2δk∆ πNδk σ σ0–( )[ ] πδk N 1+( ) σ σ0–( )[ ]/ πδk σ σ0–( )[ ]sinsincos{ }(=

Equivalent function of σ σ0+( ) )+

S/N N 1+( )δkδσ1/2
=

1/ 2δσ( )1/2
=

S/N ∆S0/ 2
1/2

S0∆σmax( )1/2
N

1/2δk[ ]=
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Because  (after identifying∆ asδk), equation (B18) can be simplified:

(B19)

(B20)

Detector-Noise-Limited Case

Let the dominant noise source be from the photodetector, and let the photodetector have a noise proportional to its
area. Such a detector will have a noise charge ofn0 = n0*(δk)1/2, which is dependent only on the square root of its area.
It is assumed that the length of the detector can be made as long as necessary and does not vary as the acceptance angle
δk is varied. Under these conditions, the signal-to-noise ratio can be written:

(B21)

or with ∆ = δk,

(B22)

Therefore, the signal-to-noise ratio is independent of the number of detectors or detector angular subtense, as long as the
minimum resolutionδσ = (N + 1)δk remains constant.

S0δσ/σmax
0

∞

∫ S0=

S/N ∆S0/ 2
1/2

S0∆( )1/2
N

1/2δk
1/2[ ]=

S0∆1/2
2S0Nδk( )1/2

=

S/N S0 ∆Nδk( )1/2
/ 2 S0( )1/2

Nδk[ ]=

S0δkδσ/ 2S0δσδk( )1/2
=

S/N S σ( )∆/ 2N( )1/2δkn0=

S σ( )∆/ 2
1/2

n0δkN/N
1/2( )=

S σ( )∆/ 2
1/2

n0* δk
1/2

/ N
1/2δσ( )[ ]=

S σ( )∆δσ/ 2n0*
2δk

2
/Nδk( )

1/2
=

S/N S σ( )δσ/ 2n0*
2δσ( )

1/2
=
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